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Abstract 
Connectionism seems to have defined itself as being 
more restricted in scope since back-propagation 
attained its present dominant status, with the 
emphasis shifting away from constraint-satisfaction 
and towards the study of networks of simple 
“neuron-like” units.  A broader class of systems was 
implied by the earlier position, and the main goal of 
this paper is to propose an outline definition of this 
class.  Two general aims inform the work:  the 
immediate practical one of addressing problems that 
stand in the way of a connectionist model of higher-
level cognition, and the less tangible issue of what to 
do about cognition if it turns out to be a 
mathematically intractable emergent product of a 
deeply non-linear complex system.  It is concluded 
that the proper study of cognition may require a 
systematic exploration of the properties of systems 
like those defined here. 

Introduction 
Here is connectionism stripped down to its 
essentials: 

- Many aspects of the symbol-processing 
paradigm seem inadequate for a close analysis 
of cognition. 
- This might be attributable to differences 
between von Neumann computers and the 
computational characteristics of the brain. 
- Therefore try to build models which are 
more consistent with brain-style computing. 

One thing that helped motivate the shift towards 
connectionism was the discovery that some 
psychologically interesting properties (including 
distributed representation and generalisation) could 
be observed in simulations of networks made from 
simple, neuron-like processing units (e.g. Hinton & 
Anderson, 1981; Hopfield, 1982; McClelland & 
Rumelhart, 1981). 

The original motivations for doing connectionism 
were such as to define a fairly broad class of 
systems that might be thought to have interesting 
properties, but in practice the initial “example” 
systems (with all their shortcomings) seem to have 
become identified with the field as a whole.  There 
is little justification for excluding from 
connectionism systems which have, for example, 

some amount of complex internal structure, or 
which communicate via signals that are more than 
just single-valued activation levels. 

This paper presents an outline of what the more 
general class of systems might look like, together 
with an indication of how they might be used to 
overcome some of the problems that beset current 
connectionist models. 

The study of these systems would be difficult 
because of their intrinsic complexity.  The definition 
is therefore presented with a view to the systematic, 
parameterised exploration of the properties of such 
systems.  The eventual goal of the research is to 
investigate the behaviour of a variety of these 
systems in order to discover relationships between 
global behavior and local mechanisms. 

Complex Systems 
One aim of this paper is to suggest that many 
researchers have given a wide berth to systems more 
sophisticated than simple neural nets because of a 
reluctance to face a somewhat threatening 
possibility:  that complex, non-linear systems are 
likely to have global properties that are not 
predictable from a knowledge of their local 
behavior. 

The term “non-linear” might originally have 
referred to relationships which could not be plotted 
as straight lines, but its current usage is a good deal 
more subtle.  If it is possible to take a system to 
pieces, model the behavior of its parts, then 
understand the system as a whole by (in some sense) 
combining the models of the parts, then the system 
is linear.  Most of the physical world is linear in this 
sense, but it is distressingly easy to devise 
computational systems in which knowledge of the 
parts does not illuminate the behavior of the whole. 

These systems are “complex” in a deep sense:  it 
may well be that no scientific or mathematical 
account can be found for some aspects of their 
global behaviour.  All that can be done is to build 
simulations of them, and perhaps observe 
empirically that some local behaviors give rise to 
particular kinds of global behavior.  Properties like 
this are “emergent” in a practical sense, if not in a 
metaphysical one. 



It may never be possible to gauge the extent of 
this pessimistic scenario:  at any time we may 
discover some powerful new mathematical tools 
which allow complex systems to become “analytic” 
in the way that analytic systems are now.  However, 
there is little sign of such a development at present. 

Early Connectionism 
Interpretations may differ, but at the outset it seemed 
that connectionism put the emphasis on the 
exploration of systems which were driven by the 
need to satisfy “simultaneous mutual constraints” 
(McClelland, Rumelhart & Hinton, 1986).  The rest 
of this section outlines some of the points of 
common purpose that defined that early attitude. 

Levels of Description 
The brain is clearly a parallel computational system 
at the neural level.  Cognitive modelling in the 
“symbolic” paradigm, however, takes its inspiration 
not from any kind of parallel computer but from the 
von Neumann architecture, in which there is one 
processor, one large store of symbols, and the 
former manipulates the latter.  Part of the credo of 
the symbolic school is that it doesn’t matter what 
kind of machine you are using at the lowest level, 
because any computer with more than a modest 
amount of sophistication can be set up to emulate 
any other. 

For a connectionist, claims about computational 
equivalence are not relevant in this context because 
the issue is about appropriate kinds of description.  
There are many ways to choose a computational 
formalism, each of which can be used to build a 
(technically equivalent) description of a given 
system.  But some descriptions may be simpler than 
others.  As part of the search for a simpler, more 
appropriate way to describe cognition, a 
connectionist makes the following assumption: 

Descriptive Levels Continuity 

The properties of a cognitive system at the 
neural level (simple units, massive parallelism, 
etc.) are likely to be reflected in [simple, 
powerful, appropriate] descriptive levels that 
lie above the neural level. 

Observing the extreme discrepancy between von 
Neumann-inspired models and the neural substrate, 
the connectionist concludes that either (i) there is an 
intermediate level which has some characteristics of 
both, or (ii) there is a modification to the symbolic 
level which gives it some “neural” characteristics 
(and makes it more adequate), or (iii) both of these.  
Either way, exploring the properties of connectionist 
systems is a way to clarify the situation. 

Notice, however, that nothing in this position 
forces a retrenchment to a “strictly” neural kind of 
model:  it would be equally valid to look for an 
intermediate level of description at which the 
computational primitives had mixed symbolic/neural 

characteristics. 

Distributed Processing 
If a cognitive system looks, on the surface, to be 
behaving in a structured, ordered, controlled 
manner, this does not necessarily mean that there are 
explicit mechanisms inside responsible for each 
aspect of this control.  It may well be that an 
apparent “executive” module is actually a collective 
effect of a number of widely distributed units which 
are not specialised for only this one function.  
Exactly the same argument applies to the storage of 
information in distributed representations.  Both 
confer some robustness on the system if the 
processors are unreliable or liable to damage.  Also, 
if a function can be distributed, the system might 
work more efficiently because of the intrinsic 
parallelism. 

Multiple Weak Constraints 
If a system is designed so that every important event 
in it is constrained by as many independent factors 
as possible, spurious constraints will most likely be 
overwhelmed by the majority trend.  Also, in the 
absence of any decisive constraints, a collection of 
weak ones which nevertheless all push in the same 
direction can be just as effective. 

Learning 
Symbolic systems tend not to be able to learn.  This 
is sometimes a consequence of the methodological 
point that it is easier to pick apart a given behavior 
than to say how it could have originated.  Other 
times it may be a matter of a doctrinal commitment 
to the existence of innately specified structures.  For 
a connectionist, the emphasis on learning has a lot to 
do with constraining the models of adult 
competence:  a learning mechanism which reaches a 
particular adult state is harder to devise than a direct 
model of that state. 

Neural-Network Connectionism 
Connectionist research has always placed a high 
premium on demonstrations of network capabilities.  
The backpropagation algorithm, for example, 
exemplified the fact that networks with hidden 
layers could learn to associate pairs of patterns.  
There are a number of ways in which this emphasis 
on existence proofs may have inhibited the proper 
development of the field. 

Simple Systems 
There is a reluctance to give neural nets too much 
complexity, either in the way of node computations, 
link signals or overall architecture.  This seems 
partly driven by ideas about neural plausibility, 
coupled with a simple set of ideas about what 
neurons actually do, and partly a matter of keeping a 
good distance from any hint of symbolic approach.  
There is also, perhaps, a feeling that neural nets are 



hard enough to understand as it is;  that no research 
methodology is readily apparent to enable any 
construction or study of more complex systems. 

Backpropagation 
The neurally implausible requirements of 
backpropagation (that activation signals travel in 
one direction while error signals travel in the other) 
seem to be tolerated because this type of system is 
regarded as an exemplar, and not necessarily as a 
direct model of any biological system.  That said, 
this kind of net still makes frequent and detailed 
appearances at the core of “models” of various 
cognitive functions (Seidenberg & McClelland, 
1989; Rueckl, Cave & Kosslyn (1991); Elman 
1990). 
Part of the attraction of backprop is that a 
mathematical proof exists of its statistical 
convergence behavior (Rumelhart, Hinton & 
Williams, 1986).  For many interesting complex 
systems, it is unlikely that proofs will ever be 
available for any of their interesting properties, so 
the fact that backprop does have one seems to have 
stifled the exploration of other kinds of system. 
A more puzzling development is the fact that the 
simple recurrent net (Elman, 1990), which is a 
variation on the backprop idea, has entirely cut loose 
from the mathematical proof (it is actually not valid 
for SRNs). 

Supervised Learning 
Again, the success of backprop as a learning 
mechanism has allowed the implausibility of 
supervised learning to go largely unchallenged.  It is 
arguable that any network that needs a “teacher” 
during the training phase is leaving most of the 
intelligent work to the teacher. 

Generalisation 
The kind of generalisation achieved by most neural 
nets is of a very weak kind:  patterns are similar only 
to the extent that they overlap.  If a network learns 
about some regularities, those regularities are never 
used as the basis for any further learning. 

A Class of Parallel Cognitive Systems 
Having reviewed some characteristics of both 
original and post-backprop connectionism, this 
section takes a more prescriptive line.  The goal here 
is to try to give shape to a type of system that lies 
somewhere between the strictly neural level of 
description and the symbolic level.  Or, perhaps this 
is the symbolic level, but modified to make it more 
neural.  Many of the suggested mechanisms could 
only be properly tested by exhaustive simulations 
under a variety of conditions, so at this stage the aim 
is just to moot the possibility that these systems need 
to be investigated. 
There is also here an attempt to be provocatively 
complex:  suppose the real story of cognition were 
to be as complex and (especially) as full of 

interdependencies as implied here?  Present 
approaches which favour specialised research 
paradigms for each individual micro-domain of the 
cognitive system would stand little chance of 
discovering any significant aspect of the design. 

Granularity 
Cognitive systems treat the world as if it were a 
changing configuration of more or less stable things.  
A “thing” is represented internally by a 
computational structure that is referred to here as an 
element [this neutral term is introduced so that 
“symbol” and “unit”  -  which are equally near to the 
intended sense  -  can be used for references to the 
equivalent constructs in the symbolic and 
connectionist paradigms, respectively]. 

Distributed Processing 
Begin with the assumption that the system is 
homogenous:  all elements are of the same type, 
although each adapts to represent something unique, 
and all regular behavior that can be observed in the 
system is the result of the interactions of elements 
with one another.  In other words, try to localise all 
functions within elements, rather than assuming at 
any stage that there are specialised mechanisms 
elsewhere which operate on elements.  This 
assumption is a point of departure, not a dogma:  it 
should be qualified by a (cautious) sensitivity to 
empirical data about the brain. 

Distributed Representations 
A distributed representation, in the connectionist 
sense, divides the encoding of a “thing” across a 
number (possibly all) of the computational units of 
the system.  To insist that units deal in 
“microfeatures,” in this way, is to force the 
discussion down one level of description, whereas it 
may be possible to build models at a level at which 
elements (as defined above) are a coherent 
construct.  These elements may at some later stage 
be realised as distributed structures, but since it 
makes an investigation of their properties much 
harder, assume for the moment that we are not 
forced to work at that level. 

Active Elements 
At any given moment there is a set of elements 
which are in the active state.  These can be roughly 
divided into three groups:  those representing the 
current state of the world, those encoding patterns of 
motor output that the system is currently engaged in, 
and those which express whatever abstract situations 
or plans the system is “thinking” about (which latter, 
notice, need not be directly determined by what it is 
experiencing or doing at the time). 

Element Behavior 
Active elements have connections to one another by 
which they exchange information.  The behavior 



function of an element determines what it does with 
the information that comes along these links.  In 
general terms it tries to constrain other elements so 
that the active set collectively represents the world 
in a way that is consistent with what the system has 
learned from experience.  This is a very simplistic 
characterisation  -  from here on out the problem is 
to specify in more detail what kind of (i) connection 
mechanisms and (ii) element behavior could give 
rise to various aspects of high-level cognition. 

New Connections and Elements 
One problem with standard connectionism is that for 
high-level cognition you need to make rapid links 
between arbitrarily different concepts.  If all nodes 
are connected to all others this is not a problem, but 
we know that this is an unrealistic thing to expect of 
real neurons.  In connectionist nets total connectivity 
(at least between layers) is often assumed, but the 
weights in these total-connect architectures do not 
change fast enough to make rapid, transient linking a 
serious possibility (learning mechanisms almost 
invariably require slow changes). 
There is a cluster of related difficulties that seem to 
follow from this rapid linking problem.  
Connectionist nets cannot bind or use variables, nor 
make an easy separation between general categories 
and particular instances.  Multiple instantiations are 
especially thorny:  how does a network which 
encodes “horse” as either a single node or a pattern 
of activation across many nodes react to the sight of 
two horses?  These are core issues in any 
reconciliation of symbol-processing and 
connectionism. 
If real neural networks were able to do more 
sophisticated things than we presently suppose, then 
it might be possible to deal with the hot linking 
problem.  We think we have a rough idea what 
neurons are capable of, but this knowledge is by no 
means very deep or reliable (Crick).  One of the 
stranger habits of standard connectionism is that 
having broadly delimited the primitives that it 
considers neurally plausible (single-valued signals 
which pass through weighted synapses and are then 
summed and thresholded), it then condones some 
transgressions (e.g. error signals in backpropagation) 
and yet not others (the node and link complexity 
needed to implement rapid links). 
The proposed resolution of this impasse, then, is to 
cut the Gordian Knot:  make a set of simple 
assumptions that are required to allow elements in 
the active set to form quick connections to one 
another because they are in the active set and not 
because they are already directly connected.  The 
one important criterion to apply to whatever 
mechanism is devised is that it call upon only 
modest computational resource requirements, such 
as would be appropriate given connectivity, signal 
speeds, etc.   
The remainder of this section gives a brief 
description of how one example of a rapid linking 
mechanism might work, then considers the 

implications for some related problems. 

Rapid links 
Suppose that elements are single nodes in a large 
network, and that there are also many “free” nodes 
that do not represent anything (they are not yet 
elements).  A typical element will have random, 
fixed connections to a reasonably large number of 
these free nodes.  Some (probably not all) of the 
active elements are able to use the free nodes to set 
up lines to other members of the active set, in much 
the same way that an analog telephone switching 
system can form a path between any two points.  
Several free nodes may need to be included in a 
given link:  they are then to some extent dedicated to 
that particular association. 

Attention 
Given the number of elements likely to be active at 
once, it would not be reasonable to link every one to 
every other.  It is therefore supposed that there is a 
privileged subset of the active elements that have 
access to the linkage mechanism:  these may well be 
what define the system’s “attentional focus.”  How 
is this subset demarcated?  This is a subtle question.  
Part of the answer must be that unusual events in the 
system can grab the link mechanism.  An unusual 
event would be one which a mutually familiar set of 
elements could not successfully encode information 
about the event.  In the absence of such “attention-
grabbing” events, the attentional focus might often 
be used to connect either simultaneously occurring 
elements, or those which are near to one another in a 
sensory channel. 

New Elements 
One node in the chain that connects two attentional-
focus elements will be used to represent the co-
occurrence of the two elements  -  it therefore 
becomes a new element in its own right.  If there are 
future occasions on which this new element is 
activated, it will be strengthened, but if the 
regularity it represents does not occur again, it will 
fade, and may eventually be reabsorbed into the pool 
of free nodes. 

Instantiations 
Suppose the system looks at an object, so that 
elements representing its perceptual features become 
activated.  The most abstract of these will be one 
which represents the identity of the object.  This is 
not isolated, however, because it will be 
simultaneously active with whatever context is 
around.  Since the exact context and the object are 
unlikely to have arisen before, it is likely that a new 
element will be created to represent the co-
occurrence.  This is an instance node.  An instance 
node is, at first, the encoding of an “episodic 
memory,” but it may then become more “semantic” 
if the circumstances recur and it is activated again.  
Usually there will be no exact recurrence and the 



node will either remain as an episodic trace, or at 
some later date be re-used. 
Since individuals are always represented as instance 
nodes, multiple instances can in principle be 
handled.  However, what happens to the properties 
of the superordinate element when an instance 
arises?  For example, suppose there is an element 
which is a noun-phrase builder, and a sentence is 
being formulated which needs to contain two noun 
phrases?  Are two instances created with identical 
properties to the parent, or does the parent in some 
way “supervise” the behavior of the two daughters? 
The obvious thing to do here is to assume, once 
again, what is wanted:  that when an instance node is 
created, the parent bequeaths its own structure to the 
daughter element so that the latter can do its own job 
of handling a set of constraints.  The link between 
the two elements then encodes the fact that they 
stand in a superordinate-subordinate category 
relation. 

Variables 
If an element encodes a pattern of surrounding 
elements when it is created, it may find that when it 
is next activated, some of the elements in the 
original encoding recur, but some do not.  If the 
element is sensitive not just to the identity of its 
neighbors when activated, but to what they are 
connected to, it may notice that there is a neighbor 
whose identity is different each time, but which is 
always connected to some other secondary neighbor 
which remains fixed.  The varying neighbor, then, 
has a fixed property:  it is a variable.  Notice that 
this mechanism requires only that elements can 
“see” the connections made by a neighboring 
(connected) element.  This is much the same as the 
assumption made in the previous section, concerning 
instantiations. 

Relationships. 
If an element learns to encode a co-occurrence in 
which two variables take part, it has effectively 
come to represent a relationship that can hold 
between members of two classes of object.  There is 
no principled difference between an element that 
encodes an object and one which encodes 
relationships between objects, except in the number 
of variables they tend to accept. 

Operations and Analogy 
Some elements may encode sequences of events that 
involve operations on other elements  -  such an 
operation is just the internal equivalent of an action 
on the outside world.  But since an operation is itself 
an element, it too can be operated upon.  Finding 
analogies, or metaphors, has a lot to do with 
developing ways of modifying operations so that 
they can be validly performed on other than their 
original operands.  It may well be that the tendency 
to hunt for analogies is a primitive mode in the 
system, so useful is it for the creation of novel types 

of element. 

Relaxation 
It is perhaps straightforward enough to see how low-
level sensory input elements can activate appropriate 
higher-level elements until eventually a full 
representation of some perceived object is formed:  
this is all happening by relaxation, because the 
many elements activated at any point will quickly 
constrain one another until the set forms a mutually 
consistent whole, and spuriously activated elements 
have been suppressed.  This relaxation process is 
maintained, or justified, by incoming sensory 
signals.  Is it possible that the element activations 
that constitute (i) the motor output representations 
and (ii) the planning and abstract thought structures, 
are driven by the same relaxation mechanism?  All 
that relaxation does is to drive all elements to find 
maximally consistent configurations with respect to 
one another given certain boundary conditions.  In 
the case of sensory input the boundary conditions 
are clear, but what is the counterpart for motor 
structures and planning/thought structures? 
It seems necessary to postulate some primitive 
motivations impinging on the system from, so to 
speak, below.  The planning elements are 
continually striving to get maximum feedback from 
something akin to “pleasure” areas, but only certain 
kinds of activity will cause these to respond (and 
even then, not for long without some change of 
scenery).  From this point of view, the planning 
region receives input from the sensory elements and 
organises appropriate element structures over the 
motor area which then resolve down into detailed 
output gestures. 
By this means the general concept of relaxation into 
maximally consistent states (in some cases 
consistent with the world, other times consistent 
with something more intangible) can be the driving 
force for events throughout the system. 

Conclusion 
It is possible to conceive of a type of cognitive 
model with basic constituents that are neither 
symbols nor neuron-like units, but which have 
characteristics of both.  A construct such as this 
would sit at a level of description higher than the 
strictly neural level, so it might eventually be 
realised as either (i) a cluster of neurons, or (ii) an 
activation pattern across many neurons or (iii) as a 
single neuron (assuming that there are significant 
neural properties yet to be discovered).  Such a 
construct might help us to reconcile the otherwise 
rather disjoint types of explanation provided within 
the symbolic and connectionist paradigms.  
However, such systems are complex, and as such are 
extremely resistant to analytical methods of study.  
For any empirical investigation to be of value a 
systematic exploration of these systems would have 
to be undertaken.  This paper has given the briefest 
of sketches of the type of system involved.  Whether 
they are practically viable and thought worthy of 



implementation remains to be seen. 
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